首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   5篇
安全科学   3篇
废物处理   6篇
环保管理   12篇
综合类   71篇
基础理论   66篇
污染及防治   45篇
评价与监测   10篇
社会与环境   8篇
灾害及防治   1篇
  2023年   12篇
  2022年   8篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   13篇
  2017年   15篇
  2016年   11篇
  2015年   11篇
  2014年   11篇
  2013年   19篇
  2012年   15篇
  2011年   25篇
  2010年   6篇
  2009年   8篇
  2008年   13篇
  2007年   4篇
  2006年   10篇
  2005年   7篇
  2004年   3篇
  2003年   9篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
排序方式: 共有222条查询结果,搜索用时 234 毫秒
11.
12.
13.
The use of assimilation tools for satellite validation requires true estimates of the accuracy of the reference data. Since its inception, the Network for Detection of Stratospheric Change (NDSC) has provided systematic lidar measurements of ozone and temperature at several places around the world that are well adapted for satellite validations. Regular exercises have been organised to ensure the data quality at each individual site. These exercises can be separated into three categories: large scale intercomparisons using multiple instruments, including a mobile lidar; using satellite observations as a geographic transfer standards to compare measurements at different sites; and comparative investigations of the analysis software. NDSC is a research network, so each system has its own history, design, and analysis, and has participated differently in validation campaigns. There are still some technological differences that may explain different accuracies. However, the comparison campaigns performed over the last decade have always proved to be very helpful in improving the measurements. To date, more efforts have been devoted to characterising ozone measurements than to temperature observations. The synthesis of the published works shows that the network can potentially be considered as homogeneous within +/-2% between 20-35 km for ozone and +/-1 K between 35-60 km for temperature. Outside this altitude range, larger biases are reported and more efforts are required. In the lower stratosphere, Raman channels seem to improve comparisons but such capabilities were not systematically compared. At the top of the profiles, more investigations on analysis methodologies are still probably needed. SAGE II and GOMOS appear to be excellent tools for future ozone lidar validations but need to be better coordinated and take more advantage of assimilation tools. Also, temperature validations face major difficulties caused by atmospheric tides and therefore require intercomparisons with the mobile systems, at all sites.  相似文献   
14.
15.
16.

Objectives

To develop a flexible droplet digital PCR (ddPCR) workflow to perform non-invasive prenatal diagnosis via relative mutation dosage (RMD) for maternal pathogenic variants with a range of inheritance patterns, and to compare the accuracy of multiple analytical approaches.

Methods

Cell free DNA (cfDNA) was tested from 124 archived maternal plasma samples: 88 cases for sickle cell disease and 36 for rare Mendelian conditions. Three analytical methods were compared: sequential probability ratio testing (SPRT), Bayesian and z-score analyses.

Results

The SPRT, Bayesian and z-score analyses performed similarly well with correct prediction rates of 96%, 97% and 98%, respectively. However, there were high rates of inconclusive results for each cohort, particularly for z-score analysis which was 31% overall. Two samples were incorrectly classified by all three analytical methods; a false negative result predicted for a fetus affected with sickle cell disease and a false positive result predicting the presence of an X-linked IDS variant in an unaffected fetus.

Conclusions

ddPCR can be applied to RMD for diverse conditions and inheritance patterns, but all methods carry a small risk of erroneous results. Further evaluation is required both to reduce the rate of inconclusive results and explore discordant results in more detail.  相似文献   
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号